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Our sponsor provided us with test data for a 3-D animated arm.

The animation shows how the arm bends inward and the bicep

expands. After that, the arm returns to its undeformed state

before it fully extends and the tricep expands.

Once the parameters were found by a physics simulation, we

used them in a physical simulation of the arm. To animate from

frame to frame, the boundary conditions were changed and the

object was evolved to quasistatic equilibrium. After each frame,

the particle positions were reset to the actual animated positions

before simulating to the next frame. Using a linear constitutive

model, the modeled arm flattened out as it bent. To fix this

problem, we used a rotated linear constitutive model.

The figure on the right

shows the error of the

different simulations

compared to the original

animation.
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The general problem can be stated as: given target data and a

parametric constitutive model, determine the set of material and

other environmental parameters λ which minimize the energy

functional

(1)

In our case the target data consists of a vector of positions in

1-D or higher dimensions and x(λ) can be obtained by solving a

system of partial differential equations. The minimization problem

can be solved using numerical methods.

Non-Linear Least Squares Approach
PhysBAM Software for Tests in 2-D

The minimization problem (1) is a non-linear least squares

problem. In order to solve it we can use a method known as the

Gauss-Newton algorithm. First, the minimization functional is

approximated using a quadratic approximation

Then this approximation can be minimized using an iterative

optimization method. Starting from an initial guess the solution

of the (k+1)-th step is

where dλ is the least squares solution of

This is equivalent to solving the normal equation

where denotes the Jacobian for the k-th iteration.

In computer animation, characters are deformable objects that

can be controlled by animators through rigs. Physical

simulations are used as a supplementary tool. Our goal is to fit

parameters of a given constitutive model to a rigged character

so that the resulting physical simulation

matches the behavior of the rig.

Specifically, we solved an inverse

problem to fit material parameters to

hand-animated target data.

This project presents a solution to this

problem using two different approaches:

non-linear least squares fitting, implemented using the Gauss-

Newton algorithm, and TV regularization, implemented using the

Split Bregman algorithm.

One choice is the total variation (TV) which is given by

The minimization functional is then given by

where μ is a tuning parameter that takes a predetermined value.

TV regularization ensures that our optimal parameters will be

piecewise constant. In computer animation, characters are often

composed of discontinuous sections such as skin, muscle or

bone, hence piecewise constant parameters are desirable.

The regularization complicates the minimization problem. The

Split Bregman algorithm allows us to decouple the L¹ and L²

portions of our equation for E(λ). This reduces the L¹

regularization problem to a series of unconstrained optimization

problems performed in each iterative step.

PhysBAM is a C++ library used by both Pixar and Disney for

physical simulations, so it is a natural choice for implementing

our parameter estimation techniques. This software utilizes the

object-oriented aspects of C++, defining data structures as

classes, which are created with constructor functions.

PhysBAM performs simulations using the theory of continuum

mechanics.

We first implemented a non-linear least squares parameter

estimation. In order to solve our minimization problem, we used

the Levenberg-Marquardt algorithm which interpolates between

the Gauss-Newton algorithm and the method of gradient

descent.

We ran different tests in 2-D, one of which was to try to set up a

surface and spell out the letters IPAM by using different stiffness

values for letters and the background.

In exploring the inverse problem of parameter fitting we tested 

the Gauss-Newton and Split Bregman in one, two and three 

dimensions. For the 1-D spring problem we thoroughly tested 

both the Gauss-Newton and Split Bregman algorithms to ensure 

they were appropriate for this type of problem. We also looked at 

2-D examples using the Poisson equation which served as a 

proof of concept of the Split Bregman algorithm in 2-D. Using the 

PhysBAM library we used the algorithms to solve the inverse 

problem of parameter fitting successfully.

We did this using a coarser grid for the parameter distribution so 

it was not necessary to solve for separate parameters for each 

tetrahedron, but we were still able to obtain visually pleasing 

results. From this it appears it is unnecessary to solve for 

separate parameters for every tetrahedron. This then is a way to 

reduce the size of the problem to make it more computationally 

manageable.

In order to describe the 2-D problem, we first considered a

square with side length s < 1 and a function k that gives the

distribution of the stiffness of this square. We stretch the square

such that the left and right boundaries are the left and right edges

of the unit square. The lower and upper boundaries are set to be

free. If we begin with a square with

side length 0 (zero rest length area),

the deformation u can be described

by the Poisson equation

Including the boundary conditions, the complete PDE system is

given by

for a given function g.

This system can be solved numerically by using the finite

difference method. Therefore, we discretize Ω by applying a

uniform grid with N² grid points. Replacing the derivatives by finite

differences and incorporating both Dirichlet and Neumann

boundary conditions yields a linear system of equations

The matrix A is sparse and the vectors v and w correspond to the

discretized solutions. The algorithm for solving the forward

problem is needed to generate target data.

The inverse problem can be solved with either Gauss-Newton or

Split Bregman. We applied both methods to fitting target data

generated by piecewise constant parameter functions. We ran

those tests to compare the two methods and to use this

information for the 3-D problem.

Here, the normal equation in each step of Gauss-Newton was

solved with the CG method which was stopped according to the

discrepancy principle. This is necessary because the equation is

ill-conditioned.

Gauss-Newton yielded faster convergence but Split Bregman

resulted in better approximations of the piecewise constant

parameter distribution which is due to the TV-term.

Especially when testing for noisy target data, we noticed a high

sensitivity of the TV-method to the Split Bregman parameters.

For sparse target data, both algorithms approximate the sparse

data very well, but do not result in a good accuracy for the dense

data.

Error vs. Iterations for noisy target data

Sparse target data

Parameter estimation for IPAM pattern after 1 iteration (top left), 5 iterations (top right), 

10 iterations (bottom left) and 40 iterations (bottom right).

PhysBAM Software for 3-D Tests

Problem Statement

Example of a character rig

TV regularization tackles the problem of ill-posedness

encountered with the Gauss-Newton approach by adding a

regularization term to the minimization problem.

Left: A 

piecewise 

constant k 

distribution. 

Right: The 

corresponding 

spatial 

configuration.
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Frame 24 of the hand-animation (left) and of a physical simulation using the linear finite volume 

constitutive model (middle) and the rotated linear finite constitutive model (right).


