
has the following properties:

 ▪ H∗
T gn = σnfn Ker HT = {0} has only discrete spectrum

 ▪Ker HT = {0} is non-compact

 ▪ The problem is severely ill-posed (i.e. exponentially decaying singular values).

The truncated Hilbert transform HT = P[a1,a3]HP[a2,a4],

where PΩ is the projection onto Ω and a1 < a2 < a3 < a4
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Ingredient 1

Finding a differential operator LSfn = λnfn, self-adjoint, that commutes with HT fn = σngn:

LSHT f = HT LSf , f ∈ D(LS)

LSfn = λnfn has discrete spectrum (resolvent (LS − i)−1 is compact)

Ingredient 1

Spectrum of LSfn = λnfn accumulates at +∞  and −∞ .

Ingredient 2

Asymptotic behavior of fn, gn, for |λn| large:

 ▪ away from ai : WKB approximation

 ▪ close to ai : Bessel approximation

Ingredient 3

Correct matching of these approximations requires: 

to ensure boundary and transmission conditions at singular points ai .

Ingredient 2

If f ∈ L2(a, b) (a,b), a, b finite 

and (Hf )(x) = 0 on (c,d) open, 

and (c,d) disjoint from (a,b), 

then f ≡ 0 on R. 

The singular values of HT fn = σngn accumulate 
only at 0 and 1.  
0 and 1 are not singular values.

Asymptotic behavior of singular values σn → 0:

σn = 2e−cnπ ·
(
1 + O(nδ−1/2)

)

c = c(a1, a2, a3, a4) > 0 , 0 < δ � 1

The problem is severely ill-posed.
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Ingredient 3

Ingredient 4

Estimate logarithmic terms in (Hgn)(a+
3 )/fn(a+

3 ) and   (Hgn)(a+
3 )/fn(a+

3 )  and find asymptotic behavior of (Hgn)(a+
3 )/fn(a+

3 ).

Question

Trivial nullspace → UNIQUENESS

Dense range, not all of Ran HT = L2(a1, a3) → ILL-POSEDNESS

Eigenfunctions of LSfn = λnfn, L̃Sgn = λngn   Singular functions of HT fn = σngn

Reconstruction: Differentiated Back-Projection within Region-of-Interest

reduces to
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2D problem

How fast is convergence to 0 and 1?

1D problems

Asymptotic analysis
Spectral analysis

Inversion of

 

is ill-posed
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LSfn = λnfn

L̃Sgn = λngn

HT fn = σngn

H∗
T gn = σnfn

fn ∈ L2(a2, a4)

gn ∈ L2(a1, a3)
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=⇒ Rf ≡ 0

 ▪ Uniqueness of Riemann-Hilbert problem

 ▪ Plemelj-Sokhotski formula

p(φ, s) =

∫ ∞

−∞
f (rα + sβ)dr

A1

Figure: Principle of CT scanners: 
Rotating source allows for multiple views

object density

Figure: Radon measurements 
Detectors measure attenuation of X-ray signals

Figure: The Field-of-View (FOV) does not cover the object 
support D. The aim is to reconstruct within the Region-of-
Interest (ROI).

Figure: Logarithmic plot of singular values ob-
tained from theory (red) and numerics (blue)

Figure: Eigenfunctions 
fn for  σn → 0

∈ (0, π) ∈ (−∞,∞)

α = (cos φ, sin φ)

β = (− sin φ, cos φ)
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Hf = 0 f f ≡ 0 0 on R

ac bd

Figure:  
fn ∈ L2(a2, a4)’s for σn → 0 close to 1  

and HT = P[0,6]HP[1.5,7.5] 
Figure:  

gn ∈ L2(a1, a3)’s for σn → 0 close to 1

Figure:  
fn ∈ L2(a2, a4)’s for σn → 0 close to 0

Figure:  
gn ∈ L2(a1, a3)’s for σn → 0 close to 0

analytic continuation 
 g(x+iy)

matching with J0

J0  J0  WKB g(x) from WKB

matching with J0, Y0 and  
requiring boundedness  
of Re g(x+i0) 

Figure: Construction 
of singular functions 
from asymptotics of 
Sturm-Liouville eigen-
functions.

Figure: Distribution of 
singular values for a 
discretization of ‖H∗

T HT‖ = 1.


