ANALYSIS OF THE TRUNCATED HILBERT TRANSFORM ARISING IN LIMITED DATA TOMOGRAPHY

– REEMA AL-AIFARI, ALEXANDER KATSEVICH

The truncated Hilbert transform $H_T = \mathcal{P}_{[a_1,a_3]} H \mathcal{P}_{[a_2,a_4]}$, where \mathcal{P}_{Ω} is the projection onto Ω and $\textit{a}_1 < \textit{a}_2 < \textit{a}_3 < \textit{a}_4$

has the following properties:

- $H_T^* H_T$ has only discrete spectrum
- H_T is non-compact
- The problem is severely ill-posed (i.e. exponentially decaying singular val

Hf measured

INTRODUCTION

Measurements: Radon transform data

$$p(\phi, \mathbf{s}) = \int_{-\infty}^{\infty} f(\mathbf{r}\alpha + \mathbf{s}\beta) d\mathbf{r}$$

(0, \pi) \in (-\infty), \infty) object density

 $\alpha = (\cos \phi, \sin \phi)$ $\beta = (-\sin\phi, \cos\phi)$

Reconstruction: Filtered Back-Projection

Limited data scenarios

Figure: The Field-of-View (FOV) does not cover the object support D. The aim is to reconstruct within the Region-of-Interest (ROI).

An **Reconstruction**: Differentiated Back-Projection within Region-of-Interest

supp f

a	
lues).	

 $L_{\mathcal{S}}H_{\mathcal{T}}f=H_{\mathcal{T}}L_{\mathcal{S}}f$, $f\in\mathcal{D}(L_{\mathcal{S}})$

Ingredient 2	
If $f \in \mathcal{L}^2$ (a,b), a, b finite	С
and $(Hf)(x) = 0$ on (c,d) open,	
and (c,d) disjoint from (a,b),	Hf = 0
then $f \equiv 0$ on \mathbb{R} .	
Ker $H_T = \{0\}$	Trivial nullspace \rightarrow UNI
$Ran\; H_{T} \neq \mathcal{L}^{2}(a_{1},a_{3})$	Dense range, not all of
$\overline{\text{Pap}H} = \ell^2(a, a)$	

Ingredient 3 $\ H_T^*H_T\ = 1$		
The singular values of H_T accumulate only at 0 and 1. 0 and 1 are not singular values.	1.0 0.8 0.6 0.4 0.2	