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RESULTS

The truncated Hilbert transform Hr = Pia, a,]HPa,.a,]

where Pq is the projection onto 2 and a; < a, < a3 < as
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has the following properties:
« H7 Ht has only discrete spectrum
= Hy is non-compact

= The problem is severely ill-posed (i.e. exponentially decaying singular values).
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Figure: Principle of CT scanners:
Rotating source allows for multiple views

Figure: Radon measurements
Detectors measure attenuation of X-ray signals

Measurements: Radon transform data

p(¢,s) = /OO f(ra + s@)dr
.\ o \ 3 = (—sin ¢, cos ¢)

€(0,m) ¢ (—o00,00)  object density

a = (COS ¢, Sin ¢)

Reconstruction: Filtered Back-Projection

Limited data scenarios

Figure: The Field-of-View (FOV) does not cover the object
support D. The aim is to reconstruct within the Region-of-
rotating X-ray source Interest (ROI).

A

See

accompanying @ Reconstruction: Differentiated Back-Projection within Region-of-Interest

reduces to
2D problem — 1D problems
family of

Inversion of
Hr = P[anas]HP[az,éM]

IS ill-posed

Spectral analysis

SPECTRAL ANALYSIS

ASYMPTOTIC ANALYSIS

Ingredient 1 Ingredient 1
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paper

Spectrum of Ls accumulates at +o0o and —oo.

@ Finding a differential operator Lg, self-adjoint, that commutes with Hy:

LsHTf = HTLsf, fe D(Ls)

| Nt Ingredient 2
Ls has discrete spectrum (resolvent (Ls — i)~ is compact)

LSf — )\nfn ngn — >\ngn

Asymptotic behavior of f, g , for |An| large:

Eigenfunctions of Lg, Lg Singular functions of Hr

= away from a;: WKB approximation

f, € L2(a, as) = close to a;: Bessel approximation

On € L%(a4, as)

Ingredient 3

See
accompanying
paper

@ Correct matching of these approximations requires: = Unigqueness of Riemann-Hilbert problem

= Plemelj-Sokhotski formula

to ensure boundary and transmission conditions at singular points a;.
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Asymptotic behavior of eigenfunctions
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Ran Hr # £%(ay, as) Dense range, not all of £%(ay, as) — ILL-POSEDNESS

Ran HT = £2(a1 ; 33)

Ingredient 4
. Estimate logarithmic terms in (Hgn)(a; ) and f,(a; ) and find asymptotic behavior of (Hgn)(a3)/f.(a3).
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